
An Architecture for Efficient Web Crawling�

Inma Hernández, Carlos R. Rivero, David Ruiz, and Rafael Corchuelo

University of Sevilla, Spain
{inmahernandez,carlosrivero,druiz,corchu}@us.es

Abstract. Virtual Integration systems require a crawling tool able to
navigate and reach relevant pages in the Deep Web in an efficient way.
Existing proposals in the crawling area fulfill some of these requirements,
but most of them need to download pages in order to classify them as
relevant or not. We propose a crawler supported by a web page clas-
sifier that uses solely a page URL to determine page relevance. Such
a crawler is able to choose in each step only the URLs that lead to
relevant pages, and therefore reduces the number of unnecessary pages
downloaded, minimising bandwidth and making it efficient and suitable
for virtual integration systems.

Keywords: Web Crawling, Crawler Architecture, Virtual Integration.

1 Introduction

Virtual Integration aims at accessing web information in an automated manner,
considering the Web as a source of information. The Virtual Integration process
starts with a query, in which the user expresses her interests, and its goal is to
obtain information relevant to that query from different sites of the Web (usually
Deep Web sites), and present it uniformly to the user in a transparent way. From
now on, we refer to relevant pages as web pages containing information related
to the user interests. Note that these interests may change over time, so the same
page can be either relevant or irrelevant.

This process is online, which means that while the system is looking for infor-
mation, the user is waiting for a response. Therefore, bandwidth and efficiency
are important issues for any Virtual Integration approach, and downloading only
relevant pages is mandatory.

Virtual Integration processes require a tool able to navigate through web sites,
looking for the information. A web crawler is an automated process that navi-
gates the Web methodically, starting on a given set of seed pages and following
a predefined order. Once the crawler has collected the relevant pages, they are
passed on to an information extractor, which obtains the information that is
contained in pages and gives it some structure, before returning it back to the

� Supported by the European Commission (FEDER), the Spanish and the An-
dalusian R&D&I programmes (grants TIN2007-64119, P07-TIC-2602, P08-TIC-
4100, TIN2008-04718-E, TIN2010-21744, TIN2010-09809-E, TIN2010-10811-E, and
TIN2010-09988-E).

M. Bajec and J. Eder (Eds.): CAiSE 2012 Workshops, LNBIP 112, pp. 228–234, 2012.
c© Springer-Verlag Berlin Heidelberg 2012



An Architecture for Efficient Web Crawling 229

user. In this paper, we focus on the crawling aspects of a Virtual Integration
process.

As Edwards et al. [10] noted, it is imperative to improve crawlers efficiency
in order to adjust to the available bandwidth, specially in Virtual Integration
contexts, in which the goal is to retrieve only pages that are relevant to the
user query. Consequently, the improvement of crawling efficiency is attracting
the interest of many researchers.

The main requirements we consider in the design of a Virtual Integration
crawler are efficiency, form filling and unlabelled training sets. The crawler must
be efficient, that is, it should minimize bandwidth usage and download only
relevant pages. Also, to access pages in the Web that are behind forms, the
crawler must be able to fill in forms giving values to the different fields, and
submit them. Finally, creating large labeled training sets is burdensome for the
user. Instead, we focus on training the crawler using an unlabeled set obtained
automatically, minimising user intervention.

Many crawling techniques have been proposed so far in the literature, such as
traditional crawlers, focused crawlers or recorders. Traditional crawlers navigate
sites by retrieving, analysing and classifying all pages that are found, including
non-relevant pages [17]. Hence, they do not fulfill the efficiency requirement. Fo-
cused crawlers reduce the amount of irrelevant pages downloaded, usually by ap-
plying a content-based web page classifier [1, 7, 6, 9, 12, 14, 15, 16]. They usually
deal with large collections of static pages, and therefore form filling is not a pri-
ority issue. Finally, recorders are crawlers in which each navigation step has been
defined by the user [2, 3, 4, 5, 8, 13, 18]. Therefore, although they deal with form
filling and efficiency requirements, the user has to label large training sets.

Our goal is to design a crawler supported by a URL-based classifier to de-
termine page relevance. Thus, it does not need to download a page in order to
classify it, reducing the bandwidth and making it efficient and suitable for vir-
tual integration systems. Also, our crawler is able to fill in and submit forms.
Furthermore, the crawler includes a setup phase in which a link training set for
the classifier is automatically collected, not requiring intervention from the user.

The rest of the article is structured as follows. Section 2 presents the archi-
tecture proposed to solve the aforementioned problem; and Section 3 lists some
of the conclusions drawn from the research and concludes the article.

2 Architectural Proposal

First, we describe the workflow of the system; then, we present the architectural
design, describing for each module a definition of its responsibilities, an example
of a typical use case, and a list of the possible issues that should be considered
during the design.

2.1 Workflow

Figure 2 presents the system workflow. A Virtual Integration process starts with
an enquirer, which translates the user interests into queries that are issued to



230 I. Hernández et al.

KeywordManager

DBKM

FileKM
<<interface>>

IKeywordManager

DWAccess

org.openqa.selenium.WebDriver

org.openqa.selenium.server.SeleniumServer com.thoughtworks.selenium.Selenium

WebDriverExtractor
SeleniumExtractor

+ extractLinks() : List
+ translateLinkRelToAbs(url : String) : String
+ fillInFormsAndDownloadHubs(lForms : List, assignments : Map) : void
+ analyseSiteForms(url : String) : List

<<interface>>
IExtractor

LinkPrototyper

ProbabilisticPrototypeCreator

+ markParts(url : URL) : Prototype

<<interface>>
IPrototypeCreator

Tokeniser

tdg.ie.tokeniser.Tokeniser

+ tokeniseURL(url : String) : URL

URLTokeniser

Data Access

+ closeSession() : void
+ getCurrentOpenSession() : Session
+ configSession() : void

HibernateUtil

ModelManager

org.hibernate.cfg.Configuration

org.hibernate.SessionFactoryHibernateSessionFactory

Fig. 1. Class diagram

���������	


�������	��������	

�������

�	
������	�

�������

��	�����������

�������

�������

�	������

�����

���������

�������

�����������������	���� ����������

���	��

�������	�

������	����

��������

���������� �����

��������

�!��

"# ������

�	
�������

�	$#����
��#�#����

�	
������	

Fig. 2. Workflow diagram

forms. Usually, response pages are hubs, lists of results ordered and indexed,
each of them showing a link to another page with detailed information. Relevant
pages, when found, are passed on to the information extractor, which obtains
and structures the information, that is returned to the user.



An Architecture for Efficient Web Crawling 231

We distinguish two phases: the setup and the normal execution phase. In the
former, the keyword manager and form filler are focused on obtaining automat-
ically a set of links from the site under analysis, which is later used to train the
classifier. The only requirement for the set is to be representative of the site,
hence it is extracted from hubs, which are the pages that contain a higher num-
ber of links in any given site. In the latter phase, the form filler is used to reach
pages behind the forms, and then the crawler makes use of the trained classifier
to select which links to follow, avoiding those not leading to relevant pages. In
this paper we focus on the setup phase of the architecture, namely in the setup
and classifier modules.

2.2 Architectural Design

We present the architecture of our crawler in Figure 1, which includes the main
modules in our design: Keyword Manager, Deep Web Access, Tokeniser, String
Prototyper and Data Access. Classes of external libraries are highlighted in grey.

The Keyword Manager. The keyword manager is responsible for finding a
list of keywords that allow to obtain a representative collection of links when
performing the corresponding searches in a given web site. As an example, con-
sider a domain English-spoken web site like Amazon.com. The keyword man-
ager chooses the words that are more likely to appear in the Amazon product
database. Given that Amazon store offers a wide product range, a list of the
most common English words would suffice to obtain a representative collection
of links. Instead, another site like Microsoft Academic Search belongs to a more
specific domain, so a list of the most cited authors, for example, would be more
useful for this purpose.

The main concerns in this module are related to the language and type of
words that are accepted by each site, specially stop words. Stop words tend
to have a higher frequency, and they usually yield a higher number of links,
but not every site allows searching using stop words. Consider Wordpress.com,
a popular blog hosting site, which is unable to find any result related to the
keywords ’a’ or ’the’, while the same words in Youtube.com yield respectively
32,800,000 and 40,000,000 results. Furthermore, stop words may deviate the
search and deteriorate results. The lexical type of word is also to be considered,
given that verbs are not as frequent as nouns, for example, so they may yield
a smaller number of results. Other important factor is the domain to which the
site belongs, that defines a specific vocabulary; for example, general, academic,
technological or economical, amongst others.

Deep Web Access. The Deep Web Access module is responsible for the inter-
action with the Deep Web sites, including analysing and filling forms, retrieving
response pages, and extracting links from those pages. This module is supported
by Selenium Java Library, and it relies on the Keyword Manager that supplies
the keywords for form filling. The main interface in this module is IExtractor,



232 I. Hernández et al.

which includes all the former methods, and which can be implemented by any
suitable library (e.g., Selenium or WebDriver).

For example, to extract information from Amazon.com, the extractor finds
the following form in Amazon.com home page:

1: <form action=”searchAction” name=”site-search”>

2: <select name=”url” id=”searchDropdownBox” >

3: <option value=”aps”>...</option>

4: </select>

5: <input type=”text” id=”twotabsearchtextbox” name=”field-keywords” />

6: <input type=”image” src=”http://images-amazon.com/images/...”/>

7: </form>

The extractor obtains a model that includes the form, with a name attribute
with value site-search, and no id attribute, the three fields included in the form,
and the submission method, which consists on clicking over the image.

One of the main issues to be solved by the extractor is the lack of standardisa-
tion in forms and fields identification. A well defined HTML page should include,
at least, an identification attribute for each element, either an id, a name, or both
of them, but actually in some web sites we find elements with none of them. In
the latter case, the extractor has to deal with the problem of referencing that
HTML element for later processing: in the case of a form, to submit it, or to
fill it in if the element is a field. We can cite Youtube.com, which is the most
visited video sharing web site, as an example of this lack of uniformity. In its
home page we can find, amongst others, the following forms:

1. A form with id and no name: <form id=”masthead-search” action=”/results”

onsubmit=”...”>

2. A form with name and no id <form name=”logoutForm” action=”/”>

3. A form without name or id <form action=”/addtoajax”>

As for the link extraction, the main issue is that a single URL may be writ-
ten in different formats, either in relative or absolute form. For example, in
Amazon.com, link 1 can be written http://www.amazon.com/ref=logo, /ref=logo or
./ref=logo.

Tokeniser. The Tokeniser module is responsible for processing URLs extracted
from the sites pages, and splitting them into tokens, using some configuration.
Our implementation of the tokeniser is based on RFC 3986 recommendation for
URIs, although not every site conforms to it. Sometimes URLs include special
characters, spaces and other symbols that difficult URL parsing. Also, URL
query strings are composed of parameters, which may be optional or mandatory,
and which may be arranged in different orders.

The String Prototyper. The String Prototyper module is responsible for
building a collection of string prototypes, using links extracted from a site, where
each prototype is a regular expression.



An Architecture for Efficient Web Crawling 233

The main IPrototypeCreator contains method markParts, which discerns vari-
able parts of strings that must be abstracted to create prototypes. An example
of implementation for this interface is ProbabilisticPrototypeCreator, which uses
a probability-based technique to make the former distinction.

Once the prototypes are built, they are analysed and improved so that their
classification results are more accurate. Finally, the prototyper helps the user to
assign a label to each prototype, defining the semantic concept contained in the
links of the cluster that the prototype represents, and to select relevant concepts.
In the Amazon.com example, after processing the prototypes, we obtain the
labeled prototypes included in Table 1. More details about the implementation
of the prototyper are published at [11].

Table 1. Labeled prototypes obtained from Amazon.com

Label Prototype (Regular Expression) Coverage
Reviews http://www.amazon.com/�/product-reviews/�?ie=UTF8 30%
Products http://www.amazon.com/�/dp/�?ie=UTF8&sr=� 30%
Buy New http://www.amazon.com/gp/offer-listing/ref=olp?ie=UTF8&sr=�&condition=new 8%
Buy Used http://www.amazon.com/gp/offer-listing/ref=olp?ie=UTF8&sr=�&condition=used 6%

Data Access. Data access module is responsible for persisting all data in our
system. It is based on Hibernate, which manages all objects persistence in a
given database (in our case, Oracle). The main classes in this module are Hiber-
nateUtil, which contains all methods needed to create and manage a Hibernate
session, and ModelManager, which includes methods to manage all objects, in-
cluding creating, updating and deleting them, and also performing queries to
retrieve those objects, using Hibernate support.

3 Conclusions

In this paper, we present an architecture for an efficient crawler that fills in and
submits forms, accessing pages in the Deep Web. With respect to the require-
ments we mentioned in section 1, our proposal classifies web pages depending on
the link URL format, so it is applicable to any web site. Hence, our proposal is
not only efficient, but also generic and applicable in different domains. Also, our
proposal is able to integrate existing form modeling proposals into our crawler,
which makes it able to fill in and submit forms, hence dealing with the Deep
Web. Finally, our classifier is trained using a set of links collected automatically.
The system analyses them and gives the user a list of prototypes represent-
ing concepts, while the user is only responsible for defining his or her interest,
by labeling and picking one or more prototypes. Not that users intervention is
unavoidable, given that the relevancy criteria depends solely on them.

As a result, we designed an efficient crawler, able to access web pages au-
tomatically, while requiring as little intervention as possible from the users. A
demo of our implementation of the link classifier is available in the author web
site 1.
1 http://www.tdg-seville.info/inmahernandez/CALA+Demo

http://www.tdg-seville.info/inmahernandez/CALA+Demo


234 I. Hernández et al.

References

1. Aggarwal, C.C., Al-Garawi, F., Yu, P.S.: On the design of a learning crawler for
topical resource discovery. ACM Trans. Inf. Syst. 19(3), 286–309 (2001)

2. Anupam, V., Freire, J., Kumar, B., Lieuwen, D.F.: Automating web navigation
with the webvcr. Computer Networks 33(1-6), 503–517 (2000)

3. Baumgartner, R., Ceresna, M., Ledermuller, G.: DeepWeb navigation in web data
extraction. In: CIMCA/IAWTIC, pp. 698–703 (2005)

4. Bertoli, C., Crescenzi, V., Merialdo, P.: Crawling programs for wrapper-based ap-
plications. In: IRI, pp. 160–165 (2008)

5. Blythe, J., Kapoor, D., Knoblock, C.A., Lerman, K., Minton, S.: Information in-
tegration for the masses. J. UCS 14(11), 1811–1837 (2008)

6. Chakrabarti, S., Dom, B., Raghavan, P., Rajagopalan, S., Gibson, D., Kleinberg,
J.M.: Automatic resource compilation by analyzing hyperlink structure and asso-
ciated text. Computer Networks 30(1-7), 65–74 (1998)

7. Chakrabarti, S., van den Berg, M., Dom, B.: Focused crawling: A new approach
to topic-specific web resource discovery. Computer Networks 31(11-16), 1623–1640
(1999)

8. Davulcu, H., Freire, J., Kifer, M., Ramakrishnan, I.V.: A layered architecture for
querying dynamic web content. In: SIGMOD, pp. 491–502 (1999)

9. de Assis, G.T., Laender, A.H.F., Gonçalves, M.A., da Silva, A.S.: Exploiting Genre
in Focused Crawling. In: Ziviani, N., Baeza-Yates, R. (eds.) SPIRE 2007. LNCS,
vol. 4726, pp. 62–73. Springer, Heidelberg (2007)

10. Edwards, J., McCurley, K.S., Tomlin, J.A.: An adaptive model for optimizing per-
formance of an incremental web crawler. In: WWW, pp. 106–113 (2001)

11. Hernández, I., Rivero, C.R., Ruiz, D., Corchuelo, R.: A Tool for Link-Based Web
Page Classification. In: Lozano, J.A., Gámez, J.A., Moreno, J.A. (eds.) CAEPIA
2011. LNCS, vol. 7023, pp. 443–452. Springer, Heidelberg (2011)

12. Mukherjea, S.: Discovering and analyzing world wide web collections. Knowl. Inf.
Syst. 6(2), 230–241 (2004)

13. Pan, A., Raposo, J., Álvarez, M., Hidalgo, J., Viña, Á.: Semi-automatic wrapper
generation for commercial web sources. In: Engineering Information Systems in the
Internet Context, pp. 265–283 (2002)

14. Pant, G., Srinivasan, P.: Learning to crawl: Comparing classification schemes. ACM
Trans. Inf. Syst. 23(4), 430–462 (2005)

15. Pant, G., Srinivasan, P.: Link contexts in classifier-guided topical crawlers. IEEE
Trans. Knowl. Data Eng. 18(1), 107–122 (2006)

16. Partalas, I., Paliouras, G., Vlahavas, I.P.: Reinforcement learning with classifier
selection for focused crawling. In: ECAI, pp. 759–760 (2008)

17. Raghavan, S., Garcia-Molina, H.: Crawling the hidden web. In: WWW (2001)
18. Wang, Y., Hornung, T.: Deep web navigation by example. In: BIS (Workshops),

pp. 131–140 (2008)


	An Architecture for Efficient Web Crawling
	Introduction
	Architectural Proposal
	Workflow
	Architectural Design

	Conclusions
	References




