
AYNEC: All You Need
for Evaluating Completion Techniques

in Knowledge Graphs

Daniel Ayala1(B), Agust́ın Borrego1, Inma Hernández1, Carlos R. Rivero2,
and David Ruiz1

1 University of Seville, Seville, Spain
{dayala1,borrego,inmahernandez,druiz}@us.es

2 Rochester Institute of Technology, Rochester, NY, USA
crr@cs.rit.edu

Abstract. The popularity of knowledge graphs has led to the devel-
opment of techniques to refine them and increase their quality. One of
the main refinement tasks is completion (also known as link prediction
for knowledge graphs), which seeks to add missing triples to the graph,
usually by classifying potential ones as true or false. While there is a
wide variety of graph completion techniques, there is no standard eval-
uation setup, so each proposal is evaluated using different datasets and
metrics. In this paper we present AYNEC, a suite for the evaluation of
knowledge graph completion techniques that covers the entire evaluation
workflow. It includes a customisable tool for the generation of datasets
with multiple variation points related to the preprocessing of graphs,
the splitting into training and testing examples, and the generation of
negative examples. AYNEC also provides a visual summary of the graph
and the optional exportation of the datasets in an open format for their
visualisation. We use AYNEC to generate a library of datasets ready to
use for evaluation purposes based on several popular knowledge graphs.
Finally, it includes a tool that computes relevant metrics and uses signif-
icance tests to compare each pair of techniques. These open source tools,
along with the datasets, are freely available to the research community
and will be maintained.

Keywords: Knowledge graph · Graph refinement · Evaluation ·
Datasets

1 Introduction

The recent years have seen an increase in popularity of the representation of
large databases as graphs with nodes that represent entities and edges that
represent relations between them. The advent of Linked Open Data [4], and the
development of connected sources of structured data [1,5,13–15,19,22,23] have

c© Springer Nature Switzerland AG 2019
P. Hitzler et al. (Eds.): ESWC 2019, LNCS 11503, pp. 397–411, 2019.
https://doi.org/10.1007/978-3-030-21348-0_26

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-21348-0_26&domain=pdf
https://doi.org/10.1007/978-3-030-21348-0_26


398 D. Ayala et al.

drawn attention towards the use of knowledge graphs to represent knowledge,
as well as the development of techniques that work on graph data [2,10].

These graphs are not perfect and may be incomplete or contain errors [16].
The techniques that attempt to improve the quality of knowledge graphs are
known in general as graph refinement proposals [16], a category that includes
two types of proposals: those that detect incorrect information on graphs, and
those that complete the graphs with missing information. We focus on the lat-
ter, also known as knowledge graph completion proposals, or link prediction
for knowledge graphs. Adding missing knowledge to a graph might be seen as
a binary classification problem in which the input is a triple <s, r, t> (source
entity, relation, target entity, also known as subject, predicate, object) that rep-
resents an edge in the graph, and the output is a binary value denoting whether
or not that triple should be included in the graph.

There is a wide variety of graph completion proposals based on different
approaches like embeddings [9,21] or path-based features [8,11]. Deep learn-
ing techniques have seen popularity in the recent years [18]. However, their
evaluation is not homogeneous, that is, each proposal is evaluated on different
knowledge graphs, using different methodologies and metrics to analyse results.
There are well-known knowledge graphs that are commonly used for evaluation
purposes, such as Freebase [8,9,11,21] or WordNet [9,11,21]. However, when
used for the specific task of evaluating graph completion proposals, these graphs
are usually pre-processed by the different authors, who apply different criteria
to obtain smaller and cleaner versions of the datasets, such as FB13 [21] or
WN18 [6]. This makes it difficult to compare different proposals side by side,
especially considering that evaluating graph refinement proposals is not trivial
with many considerations and variants [16].

There is a clear need for a standard suite that defines both datasets and
metrics to be used in the evaluation of graph completion proposals. To fulfill
that need, in this paper we present AYNEC (All You Need for Evaluating
Completion), a resource for the evaluation of knowledge graph completion pro-
posals that covers the entire evaluation workflow: preprocessing, training/testing
splitting, generation of negative examples (which we refer to as negatives gener-
ation for the sake of brevity), and statistical analysis. The main contributions of
AYNEC are: AYNEC-DataGen, a tool for the generation of evaluation datasets,
which includes options for exporting the datasets in open formats for their easy
visualisation, and offers several variation points in the preprocessing, splitting,
and negatives generation steps; AYNEC-ResTest, a tool for computing met-
rics and significance tests from the results of several techniques in the statistical
analysis step; and an initial collection of evaluation datasets generated from high
quality subgraphs of popular knowledge graphs: WN11, WN18, FB13, FB15K,
and NELL. If the specific datasets that we offer are not suited for a certain task,
or if new requirements arise in the future, AYNEC-DataGen allows to easily
extend the collection with new datasets.



AYNEC: All You Need for Evaluating Completion Techniques 399

Our datasets can be freely downloaded from Zenodo1, under the CC BY 4.0
license. Our tools are open source and available as a public repository in GitHub2

under the GPLv3 license. The source code of the tools is documented, describing
each configurable parameter and function.

The rest of this paper is structured as follows: Sect. 2 describes each step
in the evaluation workflow that we have identified, Sect. 3 shows what evalua-
tion setups were used in several completion proposals in terms of the aforemen-
tioned workflow, Sect. 4 describes how AYNEC-DataGen implements the dataset
creation steps, Sect. 5 describes AYNEC-ResTest, our metrics evaluation tool,
Sect. 6 describes the specific datasets we propose for homogeneous evaluation,
and Sect. 7 summarises our work and concludes the paper.

2 Workflow

We have identified the necessary steps to evaluate graph completion propos-
als, and we have defined an abstract workflow that can be used to describe or
compare different evaluation setups in the same terms.

Fig. 1. Knowledge graph completion evaluation workflow.

Figure 1 depicts the evaluation workflow we have identified, which is com-
posed of five steps. The external inputs are the original knowledge graph to use
for evaluation, the techniques that are evaluated, and the relations on which the
techniques will be evaluated. The final output is the comparison of the techniques
according to a number of metrics and significance tests. For example, Gardner
and Mitchell [8] take Freebase and NELL as original graphs, and evaluate two
techniques on a total of 34 relations according to the metrics MAP and MRR.
1 http://doi.org/10.5281/zenodo.1744988.
2 https://github.com/tdg-seville/AYNEC.

http://doi.org/10.5281/zenodo.1744988
https://github.com/tdg-seville/AYNEC


400 D. Ayala et al.

The shadowed steps in Fig. 1 (preprocessing, splitting, negatives generation,
and metrics analysis) are the ones covered by our suite, while triple classification
is the main task to be performed by each completion proposal.

Next, we discuss every step, its inputs and outputs, and we provide examples
based on Fig. 1.

2.1 Preprocessing

The goal of this step is to load and preprocess the original knowledge graph
(which may have undergone previous preprocessing) in any way that is consid-
ered convenient. This can include, for example, the removal of relations with
frequency below a threshold, the transformation of entity or relation names, or
the insertion of new relations to enrich the graph.

Regarding the input, in some knowledge graphs, entities have literals attached
that represent simple values related to the entity (e.g. data properties in DBpe-
dia [1]). In other graphs, this kind of data is represented with additional nodes
(e.g., a node that represents the year 2008, as happens in NELL [14]).

The input to this step is a knowledge graph that represents entities as nodes,
and relations between them as edges. The output is an updated version of the
original knowledge graph. In the example of Fig. 1, relations with less than 20%
of the total edges are removed.

2.2 Splitting

Evaluating techniques require using at least two sets: training and testing. The
training set is the only part of the graph available when training a model, which
is afterwards evaluated on the testing set.

The goal of the splitting step is to divide the edges in the original graph
into two disjoint sets (training and testing). This way, we simulate a controlled
scenario of incompleteness in which we know the missing edges (the testing set).

The testing set is usually a small fraction of the graph edges, ranging from
10% to 30%. Different strategies can be used to split the original dataset. For
example, the edges taken for the testing set could be completely random, or we
could take a fixed fraction of each relation for testing.

The input to this step is the preprocessed knowledge graph. The outputs
are two disjoint sets of edges from the input graph, corresponding to the training
and testing sets. In the example of Fig. 1, 50% of the edges of each relation are
taken for the testing set.

2.3 Negatives Generation

The goal of this step is to generate negative triples, usually by creating new ones
that are not found in the original knowledge graph.

The negative examples in the training set help learn a model. Their inclusion
is optional, since the techniques themselves may be able to generate them.



AYNEC: All You Need for Evaluating Completion Techniques 401

The negative examples in the testing set are used to compute metrics like
precision or recall. If negatives are not explicitly included in the testing set, any
triple that is not found in the training or testing sets would be a negative when
computing metrics. This would be the case, for example, if we want to test a
technique that, instead of giving a score to input triples, outputs a set of triples
as the positives, and assumes every other triple is negative.

The negative examples, when generated, should pose a challenge for the clas-
sification model [21]. For instance, it is trivial to classify <John-S., cousin-of,
Republic-of-Guatemala> as false by checking that “Republic-of-Guatemala” is
outside the range of relation “cousin-of”. A more compelling example would be
<John-S, cousin-of, Mary-S.>, in which the former sanity check is not enough.

The first point of variability when generating negative examples is how many
of them should be generated. Usually, a fixed numbers of negative examples are
generated per each positive example.

The second point of variability is the generation strategy. The idea is to take
a positive example and change its source, target, or both, by choosing a replace-
ment among a set of candidates. Some proposals [9,11,21] select as candidates
the entities that are known to appear in the same position of the same relation,
keeping the domain (if it is the source) or range (if it is the target) to avoid triv-
ial cases like the <John-S., cousin-of, Republic-of-Guatemala> example. Others
follow more elaborate approaches, such as giving a higher probability to nodes
that are close to the original ones [8].

One of the problems when generating negative examples is that knowledge
graphs are usually ruled by the open world assumption, which means that the
absence of a triple in the graph does not necessarily mean that the triple is
not true, just unknown. However, since knowledge graphs tend to be sparse, the
probability of a true missing edge being chosen as a negative example should
be negligible, which is why related datasets in practice follow a closed world
assumption [8,9,11,21].

The inputs to this step are the testing set and, optionally, the training set.
The outputs are the sets with added negative edges. In the example of Fig. 1
one negative example is generated for each positive one by changing the target
entity while keeping the range of the relation.

2.4 Triple Classification

The result of this step is a set of classifications per technique and triple, which
may be a binary result (usually 1 or −1), or a probabilistic score. Some techniques
do not explicitly classify triples, but output a set of new triples after learning
from the training set, or output a source/target node for a query such as <John-
S, father-of, ?>. In these cases, there is also a latent classification: the former
classifies any triple that is not part of the output as negative, while the later
classifies the triples in a group obtained by the query (e.g., all triples with John-S
as source and father-of as relation).



402 D. Ayala et al.

Since a knowledge graph may contain thousands of relations, the evaluation
of techniques is usually limited to the few ones that are considered specially
frequent or relevant [8,11,21].

The inputs of this step are the training and testing sets, the set of techniques
to be compared, and the set of relations to test. The output is the set of results
from applying each technique to each edge of the input relations in the testing
set. In the example of Fig. 1 four techniques are compared, and only two of the
three existing relations are evaluated.

2.5 Statistical Analysis

The goal of this step is to generate a report that summarises the results obtained
in the classification step with metrics used to evaluate each technique.

The results of the classification can be used to generate a confusion matrix
for each evaluated relation, obtaining metrics like precision or recall. The metrics
are usually focused on precision [8,11], since the added knowledge, even if it is a
small amount, should be reliable. A proposal with high recall but poor precision
results in a high number of false positives that have to be manually checked and
removed, defeating the purpose of automated graph refinement.

The difference between techniques regarding each metric is assessed with
significance tests, usually paired ones (the observations of a sample can be paired
with those of another sample) computed from the metrics of each relation [8,11].

The input of this step is the set of classification results from each technique.
The output is a report with metrics and a comparison of the techniques. In the
example of Fig. 1 precision, recall, and F1 are measured for each relation, and
a significance test is used to compare the differences between techniques.

3 Related Datasets

Our study of the literature reveals that there is no consensus when it comes
to evaluating graph completion proposals. Next, we describe several evaluation
datasets in a non-exhaustive study to show that there is variability and what
the popular choices are in the workflow. Table 1 summarises our findings.

Table 1. Summary of related datasets.



AYNEC: All You Need for Evaluating Completion Techniques 403

Socher et al. [21] evaluate their proposal using Freebase [5] and WordNet [13]
as their original graphs. Preprocessing removes all but 13 relations from the
People domain in Freebase, and all but 11 in WordNet. During splitting, they
take around 10% of the edges for testing, and remove what they call “trivial
test tuples”, described as tuples from the testing set in which either or both of
their two entities also appear in the training set in a different relation or order.
They generate one negative per positive in the testing set by switching the
target entity of the positive. Regarding Freebase, they keep the domain/range
of the relation, but since in WordNet all entities share the same type (word),
all entities are actual potential candidates. During triple classification, they only
test 7 relations from Freebase and all relations from WordNet. They measure the
accuracy per relation of their proposal, and the average across relations when
comparing several proposals, without using significance tests.

Gardner and Mitchell [8] use Freebase and NELL as their original knowledge
graphs. During preprocessing they remove some Freebase relations considered
too specific or unhelpful. During splitting, they take 25% of the edges for testing.
They do not mention how many negatives are generated, but the datasets they
provide show a variable number, usually more than 5 negatives per positive in
both training and testing sets. They generate them by changing the source and
target in each positive, keeping the domain and range, and weighting candidates
by personalised page rank to favour nearby entities. Testing is limited to 25
relations from Freebase (random ones with a number of instances between 1000
and 10000, excluding those with Freebase’s mediators [3]), and 10 relations from
NELL (the ones with highest frequency and reasonable precision). They measure
mean average precision (MAP) and mean reciprocal rank (MRR), using an un-
disclosed paired permutation test to measure significance.

Ji et al. [9] use Socher et al. [21]’s datasets (FB13 and WN11) as the original
graphs, adding Freebase 15K (FB15K) [7]. There is no additional preprocessing.
Splitting is the same as the original datasets, which in the case of FB15K is 20%
for testing. Since FB15K does not include negative examples in the testing set,
they are generated in the same way as Socher et al. The relations used for testing
are the same as Socher et al. [21], and all relations for FB15K. They measure the
accuracy per relation, without using significance tests, since they only report on
the results of their proposal.

Mazumder and Liu [11] use a subset of WordNet with only 18 relations
(WN18) [6], FB15K, and ConceptNet [22] as original graphs. During prepro-
cessing, they keep from FB15K 1000 triples from each of 25 randomly selected
relations with more than 1000 instances, all triples from WN18, and all triples
from relations with more than 1000 instances from ConceptNet (18 in total).
During splitting, they take 20% of the edges for testing. They generate four
negatives per positive in both training and testing sets. Two are generated by
changing the source, and other two by changing the target, both keeping the
domain/range of the relation. Testing includes all relations. They measure MAP
and averaged F1 across relations, using a paired t-test to measure significance.



404 D. Ayala et al.

4 AYNEC-DataGen

AYNEC-DataGen, our datasets generation tool, implements the first three steps
of the workflow in Fig. 1 with several variation points.

Next we describe how our tool implements the aforementioned steps of the
workflow, presenting the variation points (VP) that can be configured.

4.1 Preprocessing

AYNEC-DataGen takes as input a file with the input graph. Note that the most
popular graphs we have identified (Freebase, WordNet, NELL) do not include
literals, but use the additional nodes we mentioned in Sect. 1.

VP1. Fraction of the graph: The original knowledge graph can be read
entirely or only a fraction of it. Each triple has a configurable probability
of being ignored, which can be useful to generate reduced versions of large
knowledge graphs.
VP2. Relation frequency threshold: Relations with a frequency below a
given threshold can be removed. This is useful to remove very specific relations
that may be problematic.
VP3. Relation accumulated fraction threshold: A fraction can be set
so that only the most frequent relations that cover that fraction of the edges
are retained, removing the rest. This is useful to remove large amounts of
relations with low frequency while keeping most of the graph intact.
VP4. Inverse removal: Relations r1 and r2 are inverses of each other if
for each instance of r1, there is an instance of r2 with swapped source and
target, and vice versa. If this option is toggled, one of the relations in each
pair of inverses is removed. This reduces the size of the datasets without
removing actual information, and avoids situations where triples are trivially
classified as true merely by checking that the inverse relation exists between
the entities, which may happen with some datasets [8,24].

4.2 Splitting

The triples resulting from preprocessing are split into the training and testing
sets.

VP5. Testing fraction: The graph can be split using a fraction that is
applied to every relation, so that said fraction is taken from the triples of
each relation for testing.
VP6. Testing fraction per relation: The graph can be split using a frac-
tion for each existing relation, so that, for each relation, the specified fraction
is taken from its triples for testing. This enables full control of the represen-
tation of each relation in the testing set.



AYNEC: All You Need for Evaluating Completion Techniques 405

4.3 Negatives Generation

Once the graph is split into two sets of positive examples, we generate negative
examples for each positive one.

VP7. Training negatives: Negatives can be generated or not for the train-
ing set, depending on whether or not techniques are expected to generate
their own negatives.
VP8. Negatives per positive: the number of negatives to generate per
positive can be a real number. The decimals represent the probability of gen-
erating an extra negative example. For example, 2.4 negatives per positive
implies that, for each positive, 2 negatives will be generated, with a proba-
bility of 0.4 of generating a third one.
VP9. Generation strategy: the generation of negatives is modular, so that
several strategies can be chosen and new ones can be easily created. We have
implemented the following strategies:

– Changing the source and/or the target of the triple with all entities as
candidates [9,21].

– Changing the source and/or target of the triple with candidates that keep
the domain/range of the relation [9,11,21].

– Changing the source and target with candidates that keep the
domain/range of the relation while weighting by PPR [8].

4.4 Output

The main output of AYNEC-DataGen are two files, “train.txt” and “test.txt”,
each of which contains a triple per line, and a label which can be “1” or “−1”
depending on whether it is a positive or a negative example. Additionally, we
generate the following items:

1. Files listing the relations and entities in the graph. Relations are sorted by
their frequency, included in the file. Entities are sorted by their total degree
in the original graph, included along with the outward and inward degrees.

2. An interactive visual summary with the aforementioned frequencies and
degrees, as depicted in Fig. 2 which shows the tables and plots in the file.

3. A file with each identified pair of inverse relations.
4. A file in gexf format with the entire dataset, including the negatives and

positives of both training and testing sets. This open format enables to import
the dataset in visualisation tools such as Gephi3. This is important when
developing a completion technique, since it allows the visual study of the
topology of the graph and its relations. For example Fig. 3 shows a visual
representation of positives in WN11-A (one of our generated datasets) where
the training and testing sets have a similar topology.

3 https://gephi.org/.

https://gephi.org/


406 D. Ayala et al.

Fig. 2. Visual summary example.

Fig. 3. Visual representation of positives in WN11-A with Gephi.

5 AYNEC-ResTest

AYNEC-ResTest takes the results of several techniques, and computes metrics
for each technique and pairwise comparisons using significance tests.

The input of AYNEC-ResTest is a file with the classification results of each
technique when applied to every triple. The result of a technique can be binary
or a probabilistic score.



AYNEC: All You Need for Evaluating Completion Techniques 407

AYNEC-ResTest computes, for each technique and relation, the confusion
matrix. These matrices are used to compute metrics per technique and relation:
precision, recall, and F1. We consider these metrics to be the most adequate
ones, especially precision. We also compute ranking-based metrics: MAP and
MRR, which are also popular [8,11], but are only adequate when the input of
the techniques is a query, and the output a ranking of potential results sorted
by score [12].

In addition to the per-relation metrics, our tool computes the macro-average
and micro-average of each metric. The macro-average of a metric is computed
by averaging the metric of each relation, while the micro-average is computed
from the sum of the confusion matrices of each relation. The macro-average is
less influenced than the micro-average by unbalanced relation frequencies.

Finally, since the output of a technique can be a probabilistic score, AYNEC-
ResTest offers the possibility of computing all the former metrics for different
values of the score threshold. The results are, consequently, computed for each
relation, for each threshold, and for each technique, allowing the user to compute
other metrics related to the precision-recall curve.

Regarding significance, our tool computes the paired, non-parametric
Wilcoxon signed rank test [25] to test distribution equivalence, by checking
whether or not we can reject the null hypothesis that the difference between
each pair of observations (each observation being the value of a metric for a
relation) follows a symmetrical distribution around 0. Sometimes, however, due
to the behaviour of a technique, some metric values may be missing (for exam-
ple, it is impossible to compute precision if there are no true or false positives
for a relation), which makes it impossible to apply paired tests. To cover this
situation, our tool also computes the non-paired Kolmogorov-Smirnov test [25],
which is sensitive not only to differences in the median of the distributions, but
also to any difference in shape. These tests are computed for each threshold,
each metric, and each pair of techniques.

6 AYNEC-Datasets

We have used AYNEC-DataGen to generate specific datasets as a standard eval-
uation set that we intend to maintain in the future if we identify convenient new
configurations or graphs. Regarding the original knowledge graphs they are gen-
erated from, we have reused existing high quality resources, some of them from
the related datasets we described in Sect. 3. We have generated our datasets from
the following knowledge graphs:

1. WN18 [6]: a subset of the WordNet dataset with 18 relations, after filtering
the entities that appear in less than 15 triples.

2. WN11 [21]: a subset of the WordNet dataset with 11 relations. We only take
the positive examples.

3. FB13 [21]: a subset of the Freebase dataset with 13 relations from the People
domain. We only take the positive examples.



408 D. Ayala et al.

4. FB15K [7]: a subset of the Freebase dataset with almost 15000 entities, after
filtering those that are not present in the Wikilinks database [20] and appear
in less than 100 triples. Some inverse relations are also removed.

5. NELL [14]: a knowledge graph crawled from the Web. It is a particularly
noisy graph [17].

Table 2. AYNEC-datasets.

After feeding them to our tool, we generated a total of 7 evaluation datasets
as depicted in Table 2, which shows the choices regarding every variation point
in AYNEC-DataGen. The rationale behind each choice is as follows:

VP1. Fraction of the graph: There is no random filtering of the triples in
the datasets, since their size is manageable.

VP2. Relation frequency threshold: We removed relations with one
instance, since we cannot include them in both training and testing sets.

VP3. Relation accumulated fraction threshold: Since FB15K and NELL
have a large amount of low frequency relations (long tail), we created, apart
from datasets with the full set of relations (FB15K-AF and NELL-AF),
reduced datasets that only keep 95% of the triples (FB15K-AR and NELL-
AR), greatly reducing the number of relations in both cases.

VP4. Inverse removal: We removed inverses in FB15K-AR and NELL-AR.
VP5. Testing fraction: We took 20% of the triples for testing, in line with

the related datasets.
VP6. Testing fraction per relation: We took the same fraction from every

relation, since we do not focus on some relations in particular that need
greater representation.

VP7. Training negatives: We generated negatives for both the training and
the testing sets, in order to ease the training of techniques.

VP8. Negatives per positive: We generated one negative per positive, which
is the most frequent amount in the related datasets.

VP9. Generation strategy: We generated negatives by changing the target of
each positive example, since graphs are completed by applying the classifier
of a relation to every possible target of one source entity, and this generation
strategy creates the most similar scenario. In most datasets, we kept the



AYNEC: All You Need for Evaluating Completion Techniques 409

range of each relation by using as candidates entities that appear as target
in another triple of the same relation. However, since all entities in WordNet
share the same nature (they are all words), all entities are candidates for all
relations. The strategy by Gardner and Mitchell [8] is more complex, but it
has not been assessed or discussed whether or not it makes the evaluation
better.

Fig. 4. Relation frequency histogram, with relations sorted by frequency.

Figure 4 shows several plots with the frequencies of the relations in each
dataset. FB15K-AR and NELL-AR reduce the long tail by trimming the less
frequent relations. The minimum relation frequency in FB15K-AF is 2, while in
FB15K-AR it is 153. Similarly, the minimum relation frequency in NELL-AF is
3, while in NELL-AR it is 120.

Compared to the related datasets [8,9,11,21], ours include more knowledge
graphs, they solve some existing problems like the presence of inverses or low
frequency relations, they follow similar strategies when it comes to parameters
like the testing fraction or negatives generation strategy, they contain meta-
information about relations and entities, and they are presented in a format
that makes it easy to import them into graph visualisation tools.

7 Conclusions

In this paper, we have presented a new suite for the evaluation of knowledge
graph completion techniques. In the literature, each proposal is evaluated with a
different setup and using different metrics and significance tests, which motivated
the creation of an unified suite that streamlines evaluation.

The tools and datasets of our suite are customisable so that they adapt to
a variety of scenarios, in case a different configuration is needed beyond the



410 D. Ayala et al.

original ones. The source code of the tools is documented, and uses popular
input/output formats in order to ease its adoption by researchers.

The generated datasets follow what we consider to be the most interesting
strategies for homogeneous out-of-the-box evaluation, reusing popular subgraphs
with useful preprocessing. The metrics and significance tests best suited for the
datasets are implemented in AYNEC-ResTest, which takes care of the compar-
ative analysis of techniques from a set of results.

The tools and datasets are publicly available online. We intend to maintain
and expand them if new requirements are identified, such as novel negatives
generation strategies or new knowledge graphs with interesting properties.

Acknowledgements. Our work was supported the Spanish R&D&I programme by
grant TIN2016-75394-R. We would also like to thank Prof. Dr. José Luis Ruiz-Reina,
head of the Computer Science and Artificial Intelligence Department at the University
of Seville, who kindly provided us with the invaluable resources that helped us in our
research.

References

1. Auer, S., Bizer, C., Kobilarov, G., Lehmann, J., Cyganiak, R., Ives, Z.: DBpedia:
a nucleus for a web of open data. In: Aberer, K., et al. (eds.) ASWC/ISWC 2007.
LNCS, vol. 4825, pp. 722–735. Springer, Heidelberg (2007). https://doi.org/10.
1007/978-3-540-76298-0 52

2. Ayala, D., Hernández, I., Ruiz, D., Toro, M.: TAPON: a two-phase machine learn-
ing approach for semantic labelling. Knowl.-Based Syst. 163, 931–943 (2019)

3. Bast, H., Bäurle, F., Buchhold, B., Haußmann, E.: Easy access to the freebase
dataset. In: Proceedings of the 23rd International Conference on World Wide Web,
pp. 95–98. ACM (2014)

4. Bizer, C., Heath, T., Berners-Lee, T.: Linked data - the story so far. Int. J. Semant.
Web Inf. Syst. 5(3), 1–22 (2009). https://doi.org/10.4018/jswis.2009081901

5. Bollacker, K.D., Cook, R.P., Tufts, P.: Freebase: a shared database of structured
general human knowledge. In: AAAI, vol. 22, pp. 1962–1963 (2007)

6. Bordes, A., Glorot, X., Weston, J., Bengio, Y.: A semantic matching energy func-
tion for learning with multi-relational data - application to word-sense disam-
biguation. Mach. Learn. 94(2), 233–259 (2014). https://doi.org/10.1007/s10994-
013-5363-6

7. Bordes, A., Usunier, N., Garćıa-Durán, A., Weston, J., Yakhnenko, O.: Translating
embeddings for modeling multi-relational data. In: Advances in Neural Information
Processing Systems, pp. 2787–2795 (2013)

8. Gardner, M., Mitchell, T.M.: Efficient and expressive knowledge base comple-
tion using subgraph feature extraction. In: Proceedings of the 2015 Conference
on Empirical Methods in Natural Language Processing, pp. 1488–1498 (2015)

9. Ji, G., He, S., Xu, L., Liu, K., Zhao, J.: Knowledge graph embedding via dynamic
mapping matrix. In: Proceedings of the 53rd Annual Meeting of the Association for
Computational Linguistics, pp. 687–696 (2015). https://doi.org/10.3115/v1/P15-
1067

10. Junghanns, M., Kießling, M., Teichmann, N., Gómez, K., Petermann, A., Rahm,
E.: Declarative and distributed graph analytics with GRADOOP. PVLDB 11(12),
2006–2009 (2018)

https://doi.org/10.1007/978-3-540-76298-0_52
https://doi.org/10.1007/978-3-540-76298-0_52
https://doi.org/10.4018/jswis.2009081901
https://doi.org/10.1007/s10994-013-5363-6
https://doi.org/10.1007/s10994-013-5363-6
https://doi.org/10.3115/v1/P15-1067
https://doi.org/10.3115/v1/P15-1067


AYNEC: All You Need for Evaluating Completion Techniques 411

11. Mazumder, S., Liu, B.: Context-aware path ranking for knowledge base completion.
In: Proceedings of the 26th International Joint Conference on Artificial Intelligence,
pp. 1195–1201 (2017). https://doi.org/10.24963/ijcai.2017/166

12. McFee, B., Lanckriet, G.R.: Metric learning to rank. In: Proceedings of the 27th
International Conference on Machine Learning, pp. 775–782 (2010)

13. Miller, G.A.: WordNet: a lexical database for English. Commun. ACM 38(11),
39–41 (1995). https://doi.org/10.1145/219717.219748

14. Mitchell, T.M., et al.: Never-ending learning. Commun. ACM 61(5), 103–115
(2018). https://doi.org/10.1145/3191513

15. Pasca, M., Lin, D., Bigham, J., Lifchits, A., Jain, A.: Organizing and searching
the world wide web of facts - step one: the one-million fact extraction challenge.
In: AAAI, pp. 1400–1405 (2006)

16. Paulheim, H.: Knowledge graph refinement: a survey of approaches and evaluation
methods. Semant. Web 8(3), 489–508 (2017)

17. Paulheim, H., Bizer, C.: Improving the quality of linked data using statistical
distributions. Int. J. Semant. Web Inf. Syst. 10(2), 63–86 (2014). https://doi.org/
10.4018/ijswis.2014040104

18. Schlichtkrull, M., Kipf, T.N., Bloem, P., van den Berg, R., Titov, I., Welling,
M.: Modeling relational data with graph convolutional networks. In: Gangemi, A.,
et al. (eds.) ESWC 2018. LNCS, vol. 10843, pp. 593–607. Springer, Cham (2018).
https://doi.org/10.1007/978-3-319-93417-4 38

19. Shao, B., Wang, H., Li, Y.: The trinity graph engine. Microsoft Research 54 (2012)
20. Singh, S., Subramanya, A., Pereira, F., McCallum, A.: Wikilinks: a large-scale

cross-document coreference corpus labeled via links to Wikipedia. University of
Massachusetts, Amherst, Technical report UM-CS-2012 15 (2012)

21. Socher, R., Chen, D., Manning, C.D., Ng, A.Y.: Reasoning with neural tensor
networks for knowledge base completion. In: Advances in Neural Information Pro-
cessing Systems, pp. 926–934 (2013)

22. Speer, R., Havasi, C.: Representing general relational knowledge in ConceptNet 5.
In: LREC, pp. 3679–3686 (2012)

23. Suchanek, F.M., Kasneci, G., Weikum, G.: YAGO: a core of semantic knowledge.
In: WWW 2007, pp. 697–706 (2007). https://doi.org/10.1145/1242572.1242667

24. Toutanova, K., Chen, D.: Observed versus latent features for knowledge base and
text inference. In: Workshop on Continuous Vector Space Models and their Com-
positionality, pp. 57–66 (2015)

25. Woolson, R.: Wilcoxon Signed-Rank Test. Wiley Encyclopedia of Clinical Trials,
pp. 1–3 (2007)

https://doi.org/10.24963/ijcai.2017/166
https://doi.org/10.1145/219717.219748
https://doi.org/10.1145/3191513
https://doi.org/10.4018/ijswis.2014040104
https://doi.org/10.4018/ijswis.2014040104
https://doi.org/10.1007/978-3-319-93417-4_38
https://doi.org/10.1145/1242572.1242667

	AYNEC: All You Need for Evaluating Completion Techniques in Knowledge Graphs
	1 Introduction
	2 Workflow
	2.1 Preprocessing
	2.2 Splitting
	2.3 Negatives Generation
	2.4 Triple Classification
	2.5 Statistical Analysis

	3 Related Datasets
	4 AYNEC-DataGen
	4.1 Preprocessing
	4.2 Splitting
	4.3 Negatives Generation
	4.4 Output

	5 AYNEC-ResTest
	6 AYNEC-Datasets
	7 Conclusions
	References




